2024. május 12., vasárnap

2024. május 3. rész

2023.05.3

2024. május 3. rész

Kombinatorika
16. Péter matematikatanára az érettségire való felkészülés közben az egyik hétvégére – szorgalmi feladatként – négy függvény ábrázolását tűzte ki a diákoknak.
Péter azt tervezi, hogy ezek közül legalább kettőt meg fog csinálni.
a) Hányféleképpen választhat ki Péter a négy függvény közül legalább kettőt?
(Két kiválasztást különbözőnek tekintünk, ha van legalább egy olyan függvény, amelyik az egyik kiválasztásban szerepel, a másikban pedig nem.) 5p
Lehetséges esetek:
1. eset: 4-ből kettőt választ ki.
Lehetőségek száma:
2. eset: 4-ből hármat választ ki.
Lehetőségek száma:
3. eset: 4-ből négyet választ ki.
Lehetőségek száma:
Összes lehetőségszám:
Koordináta-geometria
Egy (a derékszögű koordináta-rendszerben ábrázolt) lineáris függvény grafikonja átmegy a (12; 7) és a (13; 9) pontokon.
b) Adja meg a lineáris függvény hozzárendelési szabályát x ↦ mx + b alakban! 4p
Az egyenes meredeksége: m = - =
·12 + b = 7
Az egyenes y tengelymetszete: b =
A függvény hozzárendelési szabálya: x ↦ x +
Ellenőrző ábra:

Koordináta-geometria
c) Írja fel a (12; 7) középpontú, 15 egység sugarú kör egyenletét, és számítsa ki a kör és az y tengely metszéspontjainak koordinátáit! 8p
A kör egyenlete: (x + )² + (y + )² =
y tengelymetszet esetén: x =
behelyettesítés után: + (y + )² =
Rendezés után: (y + )² =
Negatív gyök: y + = → y1 =
Pozitív gyök: y + = → y2 =
Megoldás: A metszéspontok: M1 (; ) és M2 (; )
Ellenőrző ábra:




Térgeometria
17. A szolnoki cukrászdák különleges süteménye a szolnoki habos isler.
A habos isler alsó és felső része egy-egy 0,5 centiméter vastagságú, 6 cm átmérőjű henger alakú tésztalap.
A két tésztalap között pedig 90 ml henger alakú hab található.
a) Hány cm³ a két tésztalap együttes térfogata? 3p
A két tésztalap alapkörének sugara:
R = cm
A térfogata:
V = · ²· π·
V = cm³
Térgeometria
b) Hány cm a két tésztalap közötti, habbal kitöltött hengeres rész átmérője, ha a sütemény teljes magassága 5 cm? 5p
A habos rész magassága:
m(h) = cm
A habos rész térfogata:
V(h) = 90 ml = cm³
r²·π· =
Ebből r ≈ cm
Ebből d ≈ cm
Valószínűség számítás
Az islereket a készítés utolsó fázisában leöntik csokival.
Néha előfordul, hogy a csoki megdermedéskor megreped, az ilyen islert a cukrászdában nem szolgálják fel.
Annak a valószínűsége, hogy egy isleren a csokimáz megreped 0,03.
Az egyik cukrászdában szerdán 30 islert készítenek.
c) Számítsa ki annak a valószínűségét, hogy ezen a napon egyetlen isleren sem reped meg a csokimáz, és így mindet fel lehet szolgálni! 3p
Annak a valószínűsége, hogy egy isleren nem reped meg a csokimáz = p
p =
A keresett valószínűség = ^ =
Halmazok
A cukrászdában szerdánként akciós áron kínálják az islert, a zserbót és a krémest.
Az egyik szerda délelőtt az asztaloknál ülő vendégek összesen 20 rendelést adtak le.
Volt 1 olyan rendelés, amelyben mindhárom sütemény szerepelt, és 2 olyan, amelyikben egyik sem.
A rendelések között 5 olyan volt, amelyben zserbó és krémes is szerepelt, 3 olyan, amelyben zserbó és isler is, és 6 olyan, amelyben isler és krémes is.
9 olyan rendelés volt, amelyben szerepelt zserbó.
Tudjuk, hogy ugyanannyi rendelésben szerepelt krémes, mint amennyiben isler.
d) Hány olyan rendelés volt szerda délelőtt, amelyben a három sütemény közül csak a krémes szerepelt? 6p
Egyik sem =
Mindegyik =
Csak zserbó és krémes =
Csak zserbó és isler =
Csak isler és krémes =
Csak zserbó =
Csak krémes = x
Csak isler = x +
Halmazábra:

2x + =
x =



Gráfok
18. Egy elektromos autó egyik alkatrészéhez tartozó áramköri elem szemléltethető egy olyan hatpontú gráffal, melynek hat éle van, és amelyben öt pont fokszáma ismert: 1, 2, 2, 3, 3.
a) Adja meg a hatodik csúcs fokszámát, és rajzoljon fel egy olyan gráfot, amely a feltételeknek megfelel! 4p
ÁBRA:





A csúcsok fokszámának összege =
A hatodik csúcs fokszáma =
Sorozatok
Az elektromos autók által egy feltöltéssel megtehető távolságot az autó hatótávolságának nevezzük.
Ádám egy újságcikkben azt olvasta, hogy míg 2011-ben átlagosan csak 95 km volt egy elektromos autó hatótávolsága, addig ez az érték 2023-ra 425 km-re nőtt.
Ádám arra kíváncsi, hogy ha a 2011 és 2023 között tapasztalható tendencia folytatódik, akkor melyik évben éri el az elektromos autók átlagos hatótávolsága az 1000 km-t.
Ehhez két modellt alkot.
Az egyik esetben úgy számol, hogy évről évre ugyanannyival nő az átlagos hatótávolság az előző évihez képest.
b) Ezzel a modellel számolva melyik évben éri el az átlagos hatótávolság az 1000 km-t? 6p
+ ·d =
d =
+ (n - 1)· = 1000
n =
Ezzel a modellel számolva tehát -ben érné el az 1000 km-t az elektromos autók átlagos hatótávolsága.
Sorozatok
A másik esetben úgy számol, hogy évről évre ugyanannyiszorosára nő az átlagos hatótávolság az előző évihez képest.
c) Ezzel a modellel számolva melyik évben éri el az átlagos hatótávolság az 1000 km-t? 7p
· q^ =
q =
· ^(n - 1) = 1000
n - 1 = log()
n =
Ezzel a modellel számolva tehát -ben érné el az 1000 km-t az elektromos autók átlagos hatótávolsága.
2024. május 3. feladatsor

NÉV:
JEGY:
Fel. Max Kapott Param Be
16/a
16/b
16/c
17/a
17/b
17/c
17/d
18/a
18/b
18/c
Össz.: