Év | Május | Idegen nyelvű | Október | Egyéb |
2023. |
2023_05 ✓ 2023_05_2 ✓ |
2023_06 ✓ | 2023_10 ✓ |
2023_02 PDF MINTA PDF |
2022. |
2022_05 ✓ 2022_05_2 ✓ |
2022_06 ✓ | 2022_10 ✓ | 2022_02 PDF |
2021. |
2021_05 ✓ 2021_05_2 ✓ |
2021_06 ✓ | 2021_10 ✓ | 2021_02 PDF |
2020. |
2020_05_1 ✓ 2020_05_2 ✗ |
2020_06 ✓ | 2020_10 ✓ |
2020_02 PDF 2020_02 próba ✗ |
2019. |
2019_05_1 ✓ 2019_05_2 ✗ |
2019_06 ✓ | 2019_10 ✓ |
2019_02 PDF 2019_02 próba ✗ |
2018. |
2018_05_1 ✓ 2018_05_2 ✗ |
2018_06 ✓ | 2018_10 ✓ | 2018_02 PDF |
2017. |
2017_05 ♥ 2017_05 ✓ 2017_05_2 ✓ |
2017_06 ✓ | 2017_10 ✓ | 2017_02 PDF |
2016. |
2016_05 ✓ 2016_05_2 ✓ |
2016_06 ✓ | 2016_10 ✓ | Egyéb |
2015. |
2015_05 ✓ 2015_05_2 ✓ |
2015_06 ✓ | 2015_10 ✓ | Egyéb |
2014. |
2014_05 ✓ 2014_05_2 ✓ |
2014_06 ✓ | 2014_10 ✓ | Egyéb |
2013. |
2013_05 ✓ 2013_05_2 ✓ |
2013_06 ✓ | 2013_10 ✓ | Egyéb |
2012. |
2012_05 ✓ 2012_05_2 ✓ |
2012_06 ✓ | 2012_10 ✓ | Egyéb |
2011. |
2011_05 ✓ 2011_05_2 ✓ |
2011_06 ✓ | 2011_10 ✓ | Egyéb |
2010. |
2010_05 ✓ 2010_05_2 ✓ |
2010_06 ✓ | 2010_10 ✓ | Egyéb |
2009. |
2009_05 ✓ 2009_05_2 ✓ |
2009_06 ✓ | 2009_10 ✓ | Egyéb |
2008. |
2008_05 ✓ 2008_05_2 ✓ |
2008_06 ✓ | 2008_10 ✓ | Egyéb |
2007. |
2007_05 ✓ 2007_05_2 ✓ |
2007_06 ✓ | 2007_10 ✓ | Egyéb |
2006. |
2006_05 ✓ 2006_05_2 ✓ |
2006_06 ✓ | 2006_10 ✓ | 2006_2 ⊕ |
2005. |
2005_05 ✓ 2005_05_2 ✓ 2005_05_3 ✓ |
2005_06 ✓ | 2005_10 ✓ | 2005_07 ⊕ |
2003/2004. (minta) | - | - | - |
2004 ⊕ 2003 ⊕ |
NKP. (próba) | - | - | - |
1. feladatsor 2. feladatsor 1. feladatsor 2. feladatsor 1. feladatsor |
2023. október 26., csütörtök
Főoldal
2023. október 1. rész
2023. október 1. rész
1. Adja meg az 1848 prímtényezős felbontását!
1848 = 2^· 3^· 5^· 7^· 11^
1848 = 2^· 3^· 5^· 7^· 11^
Max p. | Kapott p. |
2 pont |
2. Egy építkezésre teherautókkal szállítják a homokot.
5 egyforma teherautó mindegyikének nyolcszor kellene fordulnia, hogy az összes homokot odaszállítsák.
Hány fordulóval tudná odaszállítani ugyanezt a mennyiségű homokot négy ugyanekkora teherautó?
Válasz:
5 egyforma teherautó mindegyikének nyolcszor kellene fordulnia, hogy az összes homokot odaszállítsák.
Hány fordulóval tudná odaszállítani ugyanezt a mennyiségű homokot négy ugyanekkora teherautó?
Válasz:
Max p. | Kapott p. |
2 pont |
3. Egy derékszögű háromszög két befogója (a =) 10 és (b =) 24 cm hosszú.
Számítsa ki az átfogó hosszát, és a 10 cm-es befogóval szemközti szög (α) nagyságát!
Válaszát indokolja!
Az átfogó hossza: c² = +
c = cm.
tg α = /
A 10 cm-es befogóval szemközti szög nagysága:
α = fok.
Számítsa ki az átfogó hosszát, és a 10 cm-es befogóval szemközti szög (α) nagyságát!
Válaszát indokolja!
Az átfogó hossza: c² = +
c = cm.
tg α = /
A 10 cm-es befogóval szemközti szög nagysága:
α = fok.
Max p. | Kapott p. |
4 pont |
4. Válassza ki az alábbi, a valós számok halmazán értelmezett függvények közül azt,
amelyik nem vesz fel negatív értéket!
A) x ↦ x + 3
B) x ↦ x² - 3
C) x ↦ |x - 3|
Válasz:
A) x ↦ x + 3
B) x ↦ x² - 3
C) x ↦ |x - 3|
Válasz:
Max p. | Kapott p. |
2 pont |
5. Egy autók bérbeadásával foglalkozó cég honlapja szerint ha legfeljebb 5 napra bérlünk
egy bizonyos típust, akkor a bérlés díja 7500 Ft/nap.
Ha legalább 6 napra béreljük ugyanezt a típust, akkor a bérlés díja csak 6300 Ft/nap.
Mennyivel magasabb a teljes bérleti díj, ha 5 nap helyett 6 napra béreljük ezt a típust?
A teljes bérleti díj 6 napra Ft-tal magasabb, mint 5 napra.
Ha legalább 6 napra béreljük ugyanezt a típust, akkor a bérlés díja csak 6300 Ft/nap.
Mennyivel magasabb a teljes bérleti díj, ha 5 nap helyett 6 napra béreljük ezt a típust?
A teljes bérleti díj 6 napra Ft-tal magasabb, mint 5 napra.
Max p. | Kapott p. |
2 pont |
6. Egy meteorológiai állomáson november első hetében az alábbi napi hőmérsékleti maximumokat
mérték (°C-ban): 9, 5, 6, 9, 6, 6, 8.
Adja meg az adatok átlagát, terjedelmét és mediánját!
Az átlag: °C
A terjedelem: °C
A medián: °C
Adja meg az adatok átlagát, terjedelmét és mediánját!
Az átlag: °C
A terjedelem: °C
A medián: °C
Max p. | Kapott p. |
3 pont |
7. Egy dobozban 10 piros és néhány zöld golyó van.
Tudjuk, hogy ha egy golyót kihúzunk véletlenszerűen a dobozból, akkor 2/3 annak a valószínűsége, hogy a golyó piros.
Hány zöld golyó van a dobozban?
A dobozban zöld golyó van.
Tudjuk, hogy ha egy golyót kihúzunk véletlenszerűen a dobozból, akkor 2/3 annak a valószínűsége, hogy a golyó piros.
Hány zöld golyó van a dobozban?
A dobozban zöld golyó van.
Max p. | Kapott p. |
2 pont |
8. Bontsa fel a zárójeleket az alábbi kifejezésben, és végezze el a lehetséges összevonásokat!
Megoldását részletezze!
(a + 1)(a - 1) + (a + 4)² = a² + a + + a² + a +
A kifejezés összevont alakja: a² + a +
Megoldását részletezze!
(a + 1)(a - 1) + (a + 4)² = a² + a + + a² + a +
A kifejezés összevont alakja: a² + a +
Max p. | Kapott p. |
3 pont |
9. Egy vasúti tartálykocsi tömege üres tartállyal 23,8 tonna.
Ebben a tartálykocsiban maximum 60 000 liter üzemanyagot szállíthatnak.
Egy liter üzemanyag tömege 0,85 kg.
Hány tonna a tartálykocsi tömege tele tartállyal?
Megoldását részletezze!
Az üzemanyag tömege = kg = t.
A tartálykocsi tömege tele tartállyal t.
Ebben a tartálykocsiban maximum 60 000 liter üzemanyagot szállíthatnak.
Egy liter üzemanyag tömege 0,85 kg.
Hány tonna a tartálykocsi tömege tele tartállyal?
Megoldását részletezze!
Az üzemanyag tömege = kg = t.
A tartálykocsi tömege tele tartállyal t.
Max p. | Kapott p. |
3 pont |
10. Egy kör egyenlete: (x 2)² + (y 4)² = 25.
Adja meg a kör középpontjának koordinátáit és a kör sugarát!
A kör középpontja: (; )
A kör sugara:
Adja meg a kör középpontjának koordinátáit és a kör sugarát!
A kör középpontja: (; )
A kör sugara:
Max p. | Kapott p. |
2 pont |
11. Adja meg a nemnegatív valós számok halmazán értelmezett
x ↦ √x -3 függvény zérushelyét!
A függvény zérushelye:
x =
A függvény zérushelye:
x =
Max p. | Kapott p. |
2 pont |
12. Egy szabályos pénzérmét háromszor feldobunk.
Határozza meg annak a valószínűségét, hogy a három dobás közül pontosan egy lesz fej!
Válaszát indokolja!
k =
n =
A keresett valószínűség:
p = %
Határozza meg annak a valószínűségét, hogy a három dobás közül pontosan egy lesz fej!
Válaszát indokolja!
k =
n =
A keresett valószínűség:
p = %
Max p. | Kapott p. |
3 pont |
2023. október 1. feladatsor
NÉV:EREDMÉNY:
Ssz: | Max p. | Kap p. | Par. | Bemenet |
1. | ||||
2. | ||||
3. | ||||
4. | ||||
5. | ||||
6. | ||||
7. | ||||
8. | ||||
9. | ||||
10. | ||||
11. | ||||
12. | ||||
Össz |
2023. május 2. rész
2023. május 2. rész
Függvények
13.
Adott a valós számok halmazán értelmezett f függvény: x ↦ (x +3)²
-2,25.a) Mit rendel az f függvény az x = 1-hez?
2p
f(x) =
Függvények
b) Adja meg az f függvény zérushelyeit!4p
(x +3)² -2,25 =
A másodfokú egyenlet:
x² + x + = 0
x1 =
x2 =
Függvények
c) Az alábbi mondatban húzza alá a megfelelő szót (maximuma vagy minimuma), és
egészítse ki a mondatot a pontozott helyeken a hiányzó számokkal úgy, hogy igaz
állítást kapjon!Az f függvénynek az x = helyen van, melynek értéke .
3p
Függvények → Logika
d) Adja meg az alábbi állítás logikai értékét (igaz vagy hamis)! Válaszát indokolja!"Az f függvény értékkészlete a valós számok halmaza."
2p
Az állítás logikai értéke:
Idoklás: Az f függvény értékkészlete: [; ∞[
Síkgeometria → Négyszögek
14.
Az ABCD téglalap AB oldalának hossza 12 cm, a BC oldal hossza 6 cm. A téglalapba az AECF rombuszt írjuk az ábrán látható módon (E az AB oldal, F a CD oldal egy pontja).
a) Igazolja, hogy a rombusz oldalainak hossza 7,5 cm!
5p
A feladat szövege alapján: AE = EC = x, EB = .
Az EBC derékszögű háromszögben a Pitagorasz-tétel alapján: ()² + 6² = x²
x + = 0
x = cm
Síkgeometria → Négyszögek
b) Számítsa ki a rombusz belső szögeinek nagyságát!4p
A rombusz A és C csúcsnál lévő belső szöge = α
α = 6/7,5
α = °
Az E és F csúcsnál lévő belső szögek nagysága = °
Síkgeometria → Négyszögek
c) Hány százaléka a rombusz területe a téglalap területének?4p
A téglalap területe = cm²
A rombusz területe = cm²
Így a rombusz területe %-a a téglalap területének.
Kamatos kamatszámítás
15.
Az ENSZ felmérése szerint a Föld népessége 8 milliárd fő volt 2022 végén.A Földön anépességnövekedés mértéke jelenleg körülbelül évi 1%.
a) Hány fő élne 2100 végén a Földön, ha addig folyamatosan évi 1% lenne a népességnövekedés?
3p
n = év
ZáróÉrték = · ^milliárd fő.
Záróérték = milliárd fő.
Kamatos kamatszámítás
b) Melyik évben érné el a 12 milliárd főt a Föld népessége évi 1%-os növekedés mellett?5p
= · ^n
= ^n
n = log() = év.
Tehát -ban érné el a Föld népessége az adott értéket.
Kamatos kamatszámítás
Az ENSZ becslése szerint 2100 végére 10,35 milliárd fő lesz a Föld népessége.c) 2022 végétől kezdve évente hány százalékkal kellene növekednie a népességnek ennek eléréséhez, ha minden évben ugyanannyi százalékkal nőne a népesség?
4p
·(1 +r/100)^ =
(1 + r/100) = ()√
r = %
NÉV:
JEGY:
Fel. | Max | Kapott | Param | Be |
13/a | ||||
13/b | ||||
13/c | ||||
13/d | ||||
14/a | ||||
14/b | ||||
14/c | ||||
15/a | ||||
15/b | ||||
15/c | ||||
Össz.: |
2023. október 25., szerda
2023. június 1. rész
2023. május idegen nyelvű
1. Adott a következő két halmaz: A = {a; b; e; g} és B = {a; b; c; d; f}.
Adja meg a B \ A halmazt elemei felsorolásával!
B \ A = {}
Adja meg a B \ A halmazt elemei felsorolásával!
B \ A = {}
Max p. | Kapott p. |
2 pont |
2. Bori, Kristóf és Marci játszanak.
A játék elején 10 különböző szerepkártyából húznak egyet-egyet, visszatevés nélkül.
Hányféle szereposztásban kezdhetik a játékot?
Válasz: -féle szereposztás lehetséges
A játék elején 10 különböző szerepkártyából húznak egyet-egyet, visszatevés nélkül.
Hányféle szereposztásban kezdhetik a játékot?
Válasz: -féle szereposztás lehetséges
Max p. | Kapott p. |
2 pont |
3. Zita 275 000 Ft-os fizetését 308 000 Ft-ra emelték.
Hány százalékkal emelték Zita fizetését?
Zita fizetését %-kal emelték.
Hány százalékkal emelték Zita fizetését?
Zita fizetését %-kal emelték.
Max p. | Kapott p. |
2 pont |
4. Az ABC háromszögben AB = b, AC = c.
Az AB oldal felezőpontja F, az AC oldal felezőpontja G.
Írja fel b és c vektorok segítségével az FG vektort!
Válaszát indokolja!
Adatbevitel:
a vektor fele = a/2
a vektor kétszerese = 2a
`vec(AF)` =
`vec(AG)` =
FG =
Írja fel b és c vektorok segítségével az FG vektort!
Válaszát indokolja!
Adatbevitel:
a vektor fele = a/2
a vektor kétszerese = 2a
`vec(AF)` =
`vec(AG)` =
FG =
Max p. | Kapott p. |
3 pont |
5. Adjon meg öt pozitív számot, melyek mediánja 3, terjedelme 7.
; ; ; ;
; ; ; ;
Max p. | Kapott p. |
2 pont |
6. Határozza meg a kettes számrendszerben felírt 101011 szám tízes számrendszerbeli
alakját!
101011(2) =
101011(2) =
Max p. | Kapott p. |
2 pont |
7. Tudjuk, hogy log2 x = 5.
Adja meg log2 (2x) értékét!
Válaszát indokolja!
log2 (2x) = + log2 x =
Adja meg log2 (2x) értékét!
Válaszát indokolja!
log2 (2x) = + log2 x =
Max p. | Kapott p. |
2 pont |
8. Sorolja fel azokat az x egész számokat, amelyekre –6 ≤ x ≤ 2
és –4 < x < 10 egyszerre teljesül!
Válasz:
Válasz:
Max p. | Kapott p. |
2 pont |
9. Az iskolai teremfoci-bajnokságra 16 csapat nevezett.
Hányféleképpen lehet közülük kiválasztani azt a kettőt, amelyek a nyitómérkőzést játsszák?
-féleképpen
Hányféleképpen lehet közülük kiválasztani azt a kettőt, amelyek a nyitómérkőzést játsszák?
-féleképpen
Max p. | Kapott p. |
2 pont |
10. Az ABC derékszögű háromszög oldalai a = 7,
b = 24,
c = 25 egység hosszúak.
Számítsa ki az átfogóhoz tartozó magasság hosszát!
Válaszát indokolja!
`T = (a*b)/2 =`
mc =
Számítsa ki az átfogóhoz tartozó magasság hosszát!
Válaszát indokolja!
`T = (a*b)/2 =`
mc =
Max p. | Kapott p. |
4 pont |
11. Adott az 5x – y = 7 egyenletű e egyenes.
a) Adja meg az e egyenes egy normálvektorát!
b) Írja fel annak az egyenesnek az egyenletét, amelyik átmegy a P(3; 2) ponton, és párhuzamos az e egyenessel!
a) n = (; )
b) 5x – y =
a) Adja meg az e egyenes egy normálvektorát!
b) Írja fel annak az egyenesnek az egyenletét, amelyik átmegy a P(3; 2) ponton, és párhuzamos az e egyenessel!
a) n = (; )
b) 5x – y =
Max p. | Kapott p. |
3 pont |
12. Adott a nemnegatív valós számok halmazán értelmezett f, illetve a valós számok halmazán
értelmezett g és h függvény:
f(x) = √x − 2
g(x) = (x – 2)² – 3
h(x) = 2sin x
Az alábbi állítások mellé írja oda azoknak a függvényeknek a nevét, amelyekre az adott állítás igaz!
(Adatbevitel: abc sorrendben!)
Minimumának értéke (–2): ;
Legalább két zérushelye van: ;
f(x) = √x − 2
g(x) = (x – 2)² – 3
h(x) = 2sin x
Az alábbi állítások mellé írja oda azoknak a függvényeknek a nevét, amelyekre az adott állítás igaz!
(Adatbevitel: abc sorrendben!)
Minimumának értéke (–2): ;
Legalább két zérushelye van: ;
Max p. | Kapott p. |
4 pont |
2023. május idegen nyelvű 1. feladatsor
NÉV:EREDMÉNY:
Ssz: | Max p. | Kap p. | Par. | Bemenet |
1. | ||||
2. | ||||
3. | ||||
4. | ||||
5. | ||||
6. | ||||
7. | ||||
8. | ||||
9. | ||||
10. | ||||
11. | ||||
12. | ||||
Össz |
2023. május 1. rész
2023. május
1. Egy akció során az eredetileg 21 000 Ft-os cipő árát 20%-kal csökkentették.
Mennyi a cipő csökkentett ára?
A csökkentett ár: Ft.
Mennyi a cipő csökkentett ára?
A csökkentett ár: Ft.
Max p. | Kapott p. |
2 pont |
2. Hány éle van egy hétpontú teljes gráfnak?
Válasz:
Válasz:
Max p. | Kapott p. |
2 pont |
3. Az alaphalmaz legyen az egyjegyű pozitív egész számok halmaza.
Az alaphalmaz részhalmazai közül az A halmaz legyen a prímszámok halmaza, a B halmaz pedig legyen a 3-mal osztható számok halmaza.
Elemei felsorolásával adja meg a B és az A \ B halmazt!
B = {}
A \ B = {}
Az alaphalmaz részhalmazai közül az A halmaz legyen a prímszámok halmaza, a B halmaz pedig legyen a 3-mal osztható számok halmaza.
Elemei felsorolásával adja meg a B és az A \ B halmazt!
B = {}
A \ B = {}
Max p. | Kapott p. |
3 pont |
4. Ábrázolja a nemnegatív valós számok halmazán értelmezett x ↦ √x -1 függvényt!
Táblázat:
Táblázat:
x | 0 | 1 | 4 |
y |
Max p. | Kapott p. |
2 pont |
5. Adja meg a 420 és az
504 legnagyobb közös osztóját!
Megoldását részletezze!
420 = 2^· 3^· 5^· 7^
504 = 2^· 3^· 5^· 7^
A legnagyobb közös osztó: 2^· 3^· 5^· 7^ =
Megoldását részletezze!
420 = 2^· 3^· 5^· 7^
504 = 2^· 3^· 5^· 7^
A legnagyobb közös osztó: 2^· 3^· 5^· 7^ =
Max p. | Kapott p. |
3 pont |
6. Adott az A(2; 4) és a B(3; –1) pont a koordináta-rendszerben.
Írja fel az `vec(AB)` vektort a koordinátáival!
AB = ( ; )
Írja fel az `vec(AB)` vektort a koordinátáival!
AB = ( ; )
Max p. | Kapott p. |
2 pont |
7. Egy mértani sorozat második tagja 6, harmadik tagja 9.
Számítsa ki a sorozat első hat tagjának az összegét!
Megoldását részletezze!
q =
a1 =
S6 =
Számítsa ki a sorozat első hat tagjának az összegét!
Megoldását részletezze!
q =
a1 =
S6 =
Max p. | Kapott p. |
4 pont |
8. Hány olyan háromjegyű pozitív egész szám van, amelynek számjegyei különböző
páratlan számok?
Lehetőségek száma =
Lehetőségek száma =
Max p. | Kapott p. |
2 pont |
9. Tekintsük a következő állítást: Minden út Rómába vezet.
Az alábbi állítások közül válassza ki azokat, amelyek tagadásai ennek az állításnak!
A: Nincs olyan út, ami Rómába vezet.
B: Van olyan út, amelyik nem Rómába vezet.
C: Semelyik út nem vezet Rómába.
D: Nem minden út vezet Rómába.
Válasz: ;
Az alábbi állítások közül válassza ki azokat, amelyek tagadásai ennek az állításnak!
A: Nincs olyan út, ami Rómába vezet.
B: Van olyan út, amelyik nem Rómába vezet.
C: Semelyik út nem vezet Rómába.
D: Nem minden út vezet Rómába.
Válasz: ;
Max p. | Kapott p. |
2 pont |
10. Adott a 2x + 5y = 19 egyenletű f egyenes.
Adja meg az f egyenes és az y = 5 egyenletű egyenes metszéspontjának koordinátáit!
A metszéspont: (; )
Adja meg az f egyenes és az y = 5 egyenletű egyenes metszéspontjának koordinátáit!
A metszéspont: (; )
Max p. | Kapott p. |
2 pont |
11. Számítsa ki az 1989 cm³ térfogatú gömb sugarának hosszát!
r ≈ cm
r ≈ cm
Max p. | Kapott p. |
2 pont |
12. Egy kék és egy piros szabályos dobókockával dobva mennyi a valószínűsége annak, hogy
a kék kockával nagyobb számot dobunk, mint a pirossal?
Válaszát indokolja!
k =
n =
p = %
Válaszát indokolja!
k =
n =
p = %
Max p. | Kapott p. |
4 pont |
2023. május 1. feladatsor
NÉV:EREDMÉNY:
Ssz: | Max p. | Kap p. | Par. | Bemenet |
1. | ||||
2. | ||||
3. | ||||
4. | ||||
5. | ||||
6. | ||||
7. | ||||
8. | ||||
9. | ||||
10. | ||||
11. | ||||
12. | ||||
Össz |
Feliratkozás:
Bejegyzések (Atom)